A generalized finite element method for linear thermoelasticity

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Finite Cell Method for linear thermoelasticity

The recently introduced Finite Cell Method (FCM) combines the fictitious domain idea with the benefits of high-order Finite Elements. While previous publications concentrated on single-field applications, this paper demonstrates that the advantages of the method carry over to the multi-physical context of linear thermoelasticity. The ability of the method to converge with exponential rates is i...

متن کامل

Finite element approximation to a contact problem in linear thermoelasticity

A finite element approximation to the solution of a one-dimensional linear thermoelastic problem with unilateral contact of the Signorini type and heat flux is proposed. An error bound is derived and some numerical experiments are performed.

متن کامل

Finite Element Analysis of Coupled Thermoelasticity

Most thermal stress analyses assume that the determination of the temperature field is uncoupled from that of the stress and displacement fields, while assuming that the stress and displacement fields depend on the temperature field. This semi-coupled approach to thermoelasticity is not entirely consistent. In this paper the governing equations for the fully coupled theory of thermoelasticity a...

متن کامل

Finite Element Method Solutions for Semi - linear

We compute general (non-radial) positive solutions of the semi-linear elliptic PDE u + u + u 5 = 0, in 3 space dimensions (where the nonlinearity is critical) using the Finite Element Method. We have overcome two fundamental diiculties in this approach. Firstly the convergence of the numerical solutions is very slow (on regular grids) and it is necessary to work with very ne meshes (10 6 nodes)...

متن کامل

A Generalized Finite Element Method for Multiscale Simulations

This report focuses on recent advances of the Generalized Finite Element Method (GFEM) for multiscale simulations. This method is based on the solution of interdependent global and local scale problems, and can be applied to a broad class of multiscale problems of relevance to the United States Air Force. The local problems focus on the resolution of fine scale features of the solution while th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: ESAIM: Mathematical Modelling and Numerical Analysis

سال: 2017

ISSN: 0764-583X,1290-3841

DOI: 10.1051/m2an/2016054